Elliptic flow of identified hadrons in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The elliptic flow coefficient ($v_{2}$) of identified particles in Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV was measured with the ALICE detector at the LHC. The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of $|\Delta\eta| > 0.9$ between the identified hadron under study and the reference particles. The $v_2$ is reported for $\pi^{\pm}$, $\mathrm{K}^{\pm}$, $\mathrm{K}^0_\mathrm{S}$, p+$\overline{\mathrm{p}}$, $\mathrm{\phi}$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\Xi^-$+$\overline{\Xi}^+$ and $\Omega^-$+$\overline{\Omega}^+$ in several collision centralities. In the low transverse momentum ($p_{\mathrm{T}}$) region, $p_{\mathrm{T}} < 2 $GeV/$c$, $v_2(p_\mathrm{T})$ exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for $\pi^{\pm}$ and $\mathrm{K}$ are described fairly well by hydrodynamical calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the $v_2(p_\mathrm{T})$ for p+$\overline{\mathrm{p}}$, $\mathrm{\phi}$, $\Lambda$+$\overline{\mathrm{\Lambda}}$ and $\Xi^-$+$\overline{\Xi}^+$. For transverse momentum values larger than about 3 GeV/$c$, particles tend to group according to their type, i.e. mesons and baryons. However, the experimental data at the LHC exhibit deviations from the number of constituent quark (NCQ) scaling at the level of $\pm$20$\%$ for $p_{\mathrm{T}} > 3 $GeV/$c$.

Figures

Figure 1

The correlation between the number of standard deviations from the expected signal of the TPC $(\sigma_{\mathrm{TPC}})$ and the TOF ($\sigma_{\mathrm{TOF}})$ detectors using the proton mass hypothesis for three different transverse momentum intervals in the 5$\%$ most central Pb-Pb collisions.
[png]   [pdf]   [eps]

Figure 2

Invariant mass distributions in the 10-20$\%$ centrality interval of Pb-Pb collisions for reconstructed decaying particles: (a) $\mathrm{K}^0_\mathrm{S}$, (b) $\Lambda$+$\overline{\mathrm{\Lambda}}$, (c) $\phi$, (d) $\Xi^-$($\overline{\mathrm{\Xi}}^+$), and (e) $\Omega^-$($\overline{\mathrm{\Omega}}^+$).
[png]   [pdf]   [eps]

Figure 3

The measured value of $v_2^{\mathrm{Tot}}$ in the 10-20$\%$ centrality interval of Pb-Pb collisions as a function of the invariant mass for all decaying particles presented in this article.
[png]   [pdf]   [eps]

Figure 4

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV grouped by particle species.
[png]   [pdf]   [eps]

Figure 5

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species grouped by centrality class of Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 6

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species in (a), (b), (e), (f), measured with the scalar product method with a pseudo-rapidity gap $|\Delta\eta| > 0.9$ in Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV, compared to theoretical, hydrodynamic calculations coupled to a hadronic cascade model . The panels (c), (d), (g) and (h), show the dependence of the ratio of the experimental points to a fit over the theoretical calculations as a function of $p_{\rm{T}}$. The left and right plots present the comparison for the 10-20$\%$ and 40-50$\%$ centrality intervals, respectively. The low transverse momentum points for p+$\overline{\mathrm{p}}$ are out of scale in panels (c) and (d).
[png]   [pdf]   [eps]

Figure 7

The comparison of the $p_{\rm{T}}$-differential ${v}_2$ for $\pi^{\pm}$, $\mathrm{K}$ and p+$\overline{\mathrm{p}}$ for the 10-20$\%$ centrality class of Pb-Pb and Au-Au collisions at the LHC and RHIC, respectively. The RHIC points are extracted from (STAR) and (PHENIX).
[png]   [pdf]   [eps]

Figure 8

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, and $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ for Pb-Pb collisions in various centrality intervals at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 9

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 10

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, and $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ for Pb-Pb collisions in various centrality intervals at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 11

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 12

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$ relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) in Pb--Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$~TeV. The LHC points are compared with the results from Au-Au collisions at $\sqrt{s_\mathrm{{NN}}} = 0.2$ TeV from .
[png]   [pdf]   [eps]

Figure 13

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$ relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) in Pb-Pb collisions at $\sqrt{s_\mathrm{{NN}}} = 2.76$~TeV. The LHC points are compared with the results from Au-Au collisions at $\sqrt{s_\mathrm{{NN}}} = 0.2$ TeV from .
[png]   [pdf]   [eps]
Additional Figures

Figure 1

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\pi^{\pm}$.
[png]   [pdf]   [eps]

Figure 2

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\mathrm{K}^{\pm}$.
[png]   [pdf]   [eps]

Figure 3

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\mathrm{K}^{0}_{s}$.
[png]   [pdf]   [eps]

Figure 4

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for p+$\overline{\mathrm{p}}$.
[png]   [pdf]   [eps]

Figure 5

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\phi$.
[png]   [pdf]   [eps]

Figure 6

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\mathrm{\Lambda}$+$\overline{\mathrm{\Lambda}}$.
[png]   [pdf]   [eps]

Figure 7

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$.
[png]   [pdf]   [eps]

Figure 8

The $p_{\rm{T}}$-differential ${v}_2$ for different centralities of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, represented by the different symbols and colors for $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$.
[png]   [pdf]   [eps]

Figure 9

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 0-5$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 10

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 5-10$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 11

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 10-20$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 12

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 20-30$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 13

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 30-40$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 14

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 40-50$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 15

The $p_{\rm{T}}$-differential ${v}_2$ for different particle species, represented by the different symbols and colors, for the 50-60$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 16

The $p_{\rm{T}}$-differential ${v}_2$ for $\pi^{\pm}$, p+$\overline{\mathrm{p}}$, and $\Lambda$+$\overline{\mathrm{\Lambda}}$ in (a) measured with the scalar product method with a minimum pseudorapidity gap $|\Delta\eta| > 0.9$ for the 10-20$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, compared to theoretical, hydrodynamical calculations coupled to a hadronic cascade model . Panel (b) shows the dependence of the ratio of the experimental points to a fit over the theoretical calculations as a function of $p_{\rm{T}}$.
[png]   [pdf]   [eps]

Figure 17

The $p_{\rm{T}}$-differential ${v}_2$ for $\pi^{\pm}$, p+$\overline{\mathrm{p}}$, and $\Lambda$+$\overline{\mathrm{\Lambda}}$ in (a) measured with the scalar product method with a minimum pseudorapidity gap $|\Delta\eta| > 0.9$ for the 40-50$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, compared to theoretical, hydrodynamical calculations coupled to a hadronic cascade model . Panel (b) shows the dependence of the ratio of the experimental points to a fit over the theoretical calculations as a function of $p_{\rm{T}}$.
[png]   [pdf]   [eps]

Figure 18

The $p_{\rm{T}}$-differential ${v}_2$ for $\mathrm{K}$, $\phi$, and $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ in (a) measured with the scalar product method with a minimum pseudorapidity gap $|\Delta\eta| > 0.9$ for the 10-20$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, compared to theoretical, hydrodynamical calculations coupled to a hadronic cascade model . Panel (b) shows the dependence of the ratio of the experimental points to a fit over the theoretical calculations as a function of $p_{\rm{T}}$.
[png]   [pdf]   [eps]

Figure 19

The $p_{\rm{T}}$-differential ${v}_2$ for $\mathrm{K}$, $\phi$, and $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ in (a) measured with the scalar product method with a minimum pseudorapidity gap $|\Delta\eta| > 0.9$ for the 40-50$\%$ centrality interval of Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV, compared to theoretical, hydrodynamical calculations coupled to a hadronic cascade model . Panel (b) shows the dependence of the ratio of the experimental points to a fit over the theoretical calculations as a function of $p_{\rm{T}}$.
[png]   [pdf]   [eps]

Figure 20

The comparison of the $p_{\rm{T}}$-differential ${v}_2$ for pions for the 10-20$\%$ centrality interval of Pb-Pb and Au-Au collisions at the LHC and RHIC, respectively. The RHIC points are extracted from (STAR) and (PHENIX).
[png]   [pdf]   [eps]

Figure 21

The comparison of the $p_{\rm{T}}$-differential ${v}_2$ for kaons for the 10-20$\%$ centrality interval of Pb-Pb and Au-Au collisions at the LHC and RHIC, respectively. The RHIC points are extracted from (STAR) and (PHENIX).
[png]   [pdf]   [eps]

Figure 22

The comparison of the $p_{\rm{T}}$-differential ${v}_2$ for p+$\overline{\mathrm{p}}$ for the 10-20$\%$ centrality interval of Pb-Pb and Au-Au collisions at the LHC and RHIC, respectively. The RHIC points are extracted from (STAR) and (PHENIX).
[png]   [pdf]   [eps]

Figure 23

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 0-5$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 24

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 5-10$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 25

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 10-20$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 26

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 20-30$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 27

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 30-40$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 28

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 40-50$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 29

The $p_{\rm{T}}/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 50-60$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 30

he $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 0-5$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 31

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 5-10$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 32

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 10-20$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 33

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 20-30$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 34

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 30-40$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 35

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 40-50$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 36

The $p_{\rm{T}}/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 50-60$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 37

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 0-5$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 38

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 5-10$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 39

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 10-20$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 40

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 20-30$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 41

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 30-40$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 42

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 40-50$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 43

The $(m_{\rm{T}} - m_0)/n_q$ dependence of $v_2/n_q$ for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 50-60$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 44

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 0-5$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 45

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 5-10$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 46

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 10-20$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 47

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 20-30$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 48

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 30-40$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 49

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 40-50$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]

Figure 50

The $(m_{\rm{T}} - m_0)/n_q$ dependence of the double ratio of $v_2/n_q$ for every particle species relative to a fit to $v_2/n_q$ of p and $\overline{\mathrm{p}}$ (see text for details) for $\pi^{\pm}$, $\mathrm{K}$, p+$\overline{\mathrm{p}}$, $\phi$, $\Lambda$+$\overline{\mathrm{\Lambda}}$, $\mathrm{\Xi^-}$+$\overline{\mathrm{\Xi}}^+$ and $\mathrm{\Omega}^-$+$\overline{\mathrm{\Omega}}^+$ for the 50-60$\%$ centrality interval in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV.
[png]   [pdf]   [eps]